

Factsheet: Portugal Current use of EPCs and potential links to iBRoad

Residential buildings amount to about 86% of the Portuguese building stock. Energy Performance Certificates (EPCs) are compulsory for new buildings and for existing buildings when sold or rented. Since the implementation of the transposition of the Energy Performance of Buildings Directive (EPBD) (1st of July 2007), 1.3 million EPCs have been issued. EPCs are registered in the publicly available Buildings' Energy Certification database, covering a little more than 15% of the residential building stock. The market for energy audits in Portugal is not working effectively.

Overview of the building stock Total building floor area: 751 Mm² (2013) Share of residential floor area: 86% Number of single-family houses: 3.5 million (59% of total residential buildings) Percentage of buildings built before 1990: 82% Average residential energy consumption: **70 kWh/m**² Average residential envelope performance: 1.52 W/m²°C (2014) Major renovation rate: Not available All data comes from the EU Building Stock Observatory

Figure 1: Portuguese building stock per construction year (Source: EU Building Stock Observatory)

www.ibroad-project.eu

In Portugal, the largest boom in construction occurred in the post-war period and lasted up to 1990 (Figure 1). Even though a big share of the building stock is less than 50 years old (around 63%) many of these buildings need an upgrade. Most of the Portuguese building stock was built without thermal regulations in place and is considered highly energy inefficient. Buildings built between 1960 and 1980 have the highest energy saving potential [1].

In 2010, the Portuguese residential building stock was the third largest energy consumer, accounting for 18% of the total energy consumption in the country [1]. Despite a modest level of insulation (see fact box), the average energy consumption is way below the EU average (of about 188 kWh/m²/year).

This can be explained by the warmer climate (reducing the need for heating) and the economic constraints of many building occupants after the financial crisis (in 2008-2009). The latter claim is supported by data on the 'inability to keep a home adequately warm', where Portugal scores 22.5% (2016), thus placing it close to the top of the European countries most affected by this problem [2].

Overview of existing policies and financial schemes

Portugal has the objective to save 25% of its primary energy consumption by 2020. Of this percentage, 29% must be achieved in the household and service sectors. Energy efficiency requirements for residential buildings in Portugal were introduced in 1991. The building codes were revised after the first EPBD (2006), and again after its recast (2013) [3]. The requirements for energy efficiency in buildings have gradually strengthened over this period. For example, the

insulation requirements for external walls, in Lisbon, were changed from $1.4 \, \text{W/(m}^2 \text{K)}$ in 1990 to $0.4 \, \text{W/(m}^2 \text{K)}$ in 2016 [3].

The calculation methodology is based on a reference building of the same type as the building under evaluation, but with reference values of the latter's components and technical systems [3].

The energy performance requirements established for residential buildings are set in terms of useful energy demand needs for heating and cooling. The maximum allowed primary energy for heating, cooling and domestic hot water is also included in this calculation methodology [3]. The same methodology is applied to new and existing buildings.

In Portugal, there are several financial programmes supported by the national State budget to improve the energy efficiency of buildings. These came from initiatives by the Energy Efficiency Fund (FEE), the PORTUGAL 2020 framework, the Operational Programme for Sustainability and Efficient Use of Resources (POSEUR) and the urban rehabilitation financial instruments (IFRRU2020). The most important ones are described below:

Energy Efficiency Fund

The fund was established in 2010 with the aim to support measures under the country's National Energy Efficiency Action Plan (NEEAP). Some of the measures include projects on energy efficiency in buildings and the promotion of behavioural changes. The fund provides grants to either building owners or ESCO companies. Previous calls have included projects on the installation of solar collectors and of thermal efficient windows as well as energy certifications.

IFRRU 2020

This financial instrument aims to support investments

in urban rehabilitation and energy efficiency covering the entire Portuguese territory. To boost investment, IFRRU 2020 brings together various sources of financing. These include European funds of PORTUGAL 2020, as well as funds from other entities such as the European Investment Bank and the Development Bank of the Council of Europe, in combination with funds from commercial banks. A simple process, with

one single application, was introduced to increase the number of submissions. The EPC plays a relevant role in this scheme, since it is used to identify the actual and future building performance and the cost and type of financed energy efficiency improvement measures. Thus, it leads to a better understanding of the impact of different measures.

The experts' opinion

The main barriers for energy efficiency improvements are:

- The lack of awareness about the benefits coming from energy efficiency improvements.
- The high renovation cost and the lack of financial programmes to support the implementation of improvement measures.
- The EPC still mainly seen as a formal obligation, preventing its broader uptake.
- * based on interviews and feedbacks received from national experts

The implementation status of the EPC

The main body of EPCs for residential buildings provides the following elements:

- The overall energy performance score and other general information, such as address, picture and size of the building.
- The quality of the envelope components based on a simple grading system, showing the score of thermal insulation for walls, roofs, floors and windows.
- An illustration of the buildings' heat losses.
- A list of recommendations of potential measures selected by the energy expert from a predefined list, and completed with open text.

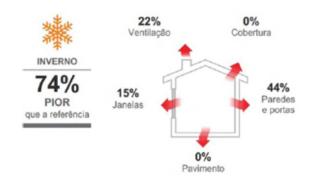


Figure 2: Example of illustration of heat losses in an EPC [3]

The EPC can display up to 10 potential measures with detailed information on the technical description, the necessary investment and the benefits coming from the implementation of each measure.

• Comparison of the building's performance with the market average [3].

Portugal implemented the transposition of the first EPBD in 2007, which also meant the launch of EPCs. The energy performance calculation is described in the Portuguese Buildings Codes and supported by EU standards. The methodologies are based on asset rating, data derived from building inspection or drawings and building specifications considering the primary energy needs. The calculation methodology for residential buildings includes three energy efficiency indicators: heating, cooling and domestic hot water, expressed in terms of primary energy. In multi-family buildings, each dwelling is certified individually.

ADENE designed, implemented and is currently managing the registry and database gathering the EPCs. Basic data (energy class, year, district and building type) is publicly available. The database includes around 1.3 million EPCs. An average of about 11,000 EPCs is registered every month. Of these EPCs, 90% are for residential buildings. The most common energy class is "D", 68% is either "D" or worse, whereas for new buildings, most of them are built to comply with class "B" [4].

The random compliance checks of the EPC consist of two approaches: basic and more detailed. The basic approach includes an automatic check of the data inserted in the EPC registry, followed by a simple verification of the basic methodologies. The more detailed check entails a full-data review of calculations and an on-site visit, to test compliance with requirements and methodologies [3]. The compliance checks are performed on a random sample of EPCs.

FACT BOX

EPCs in Portugal

Responsible authority:

ADENE

Availability of a central registry of EPCs:

Yes, data is publicly available

Number of EPCs issued:

1.3 Million

Percentage of buildings with EPCs:

15%

Period of validity of an EPC:

Residential buildings: 10 years. Non-residential buildings: 3, 8 or 10 (depending on size and typology).

Energy label/continuous scale: Energy label

Price range for an EPC: €135-€465

Median EPC: D

Body responsible for performing quality checks:

ADENE

Penalties for qualified experts for non-compliance:

Monetary penalty (fine)

Number of certified energy experts: 1,809

Requirements to become a certified energy expert:

Qualified energy experts must be architects or
engineers with at least five years of experience
in the energy efficiency of buildings.

To obtain the accreditation, the expert must
take an exam offered by ADENE.

Indicative cost of training for energy experts: €650-€750 (training not mandatory)

For energy performance calculations, there are available public and private software tools, which must follow the national algorithm and technical standards. Nevertheless, the most common tools are Excel spreadsheets. ADENE does not recommend any particular software, allowing the users to choose the one best serving their needs.

Some of them also enable an automatic filling of all the necessary information, which can then be of them also enable an automatic filling of all the necessary information, which can then be uploaded to the Buildings Energy Certification database.

The experts' opinion

- With the mandatory display of the energy label in advertisements, it was possible to note
 a growing interest in the energy performance of sold or rented buildings.
- The building owners in general have a moderate understanding about the information included in the EPCs. The 2013 version of the EPC now contains more attractive and intuitive information.
 Nevertheless, there is still room for improvement.
- The EPC is very detailed in terms of information which can be very useful as a guide for renovation works or even for deep renovations. For example, the EPC recommended measures are already used to guide investment and provide financial programmes/grants, supporting the implementation of energy efficiency in existing buildings.
- The weaknesses of the current EPC scheme are the high cost and the low-perceived benefits of the certificate, still mainly seen as an additional formal requirement.
- The current EPC gives the energy expert full flexibility to identify potential renovation measures, even if mostly evaluated on a short-term perspective. Future evolutions should focus on staged deep renovations and ways to foster them, having a possible positive impact on the relevance of the EPC.

Current status of energy audits and potential market for iBRoad

This section is about energy audits and tools, which are not included in the EPC framework. The audit described here is not identical to the energy check needed to produce an EPC.

The energy audits market for residential buildings is not working effectively. Private energy audits in single-family houses are very rare.

Building owners and energy auditors ought to address the building as one interdependent system, where the measures should also support the long-term objective of the building. However, in most countries, the current investment horizon is too short, partly due to low awareness. The individual building renovation roadmap

(iBRoad) could be successful in increasing awareness on the multiple benefits of (staged) deep renovation.

The iBRoad tool could build on the strengths of the current EPC data system, making it more user-friendly and introduce a long-term perspective. The data already gathered could turn into a powerful tool to evaluate building performance and provide concrete information to decision-makers.

The experts' opinion

- A centralised database that would store relevant information and provide it to all stakeholders would be helpful and would increase the awareness in matters related to energy efficiency in buildings.
- Energy renovation can be incentivised by providing the home-owner with better information on the opportunities to obtain potential energy savings, increasing the property value.
 Information on how to easily obtain tax benefits and access public support programmes could further incentivise renovation.

References

- 1. L. B. M. A. P. S. J. Sousa, "Research on the Portuguese Building Stock and its Impacts on Energy Consumption an Average U-Value Approach," Archives of Civil Engineering, Lix, 4, pp. 523-546, 2013.
- 2. Eurostat, "Inability to keep home adequately warm EU-SILC survey," [Online]. Available: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=ilc_mdes01&lang=en.
- 3. Concerted Action Energy Performance of Buildings, "Implementation of the EPBD," 2015.
- 4. ADENE, 2017. [Online]. Available: adene.pt/indicadores.

Main author: Buildings Performance Institute Europe

Contributing national partner: ADENE

Review: Sympraxis Team

© iBRoad, 2017. All rights reserved. Reproduction is authorised provided the source is acknowledged.

All of iBRoad's reports, analysis and evidence can be accessed from **ibroad-project.eu**.

iBRoad project partners



Annex

Portuguese Energy Performance Certificate

Edifício de Habitação SCE1234567890

DESCRIÇÃO SUCINTA DO EDIFÍCIO OU FRAÇÃO

O edifício localiza-se no concelho de Lisboa, distrito de Lisboa, a uma altitude de 20 metros e a uma distância à costa superior a 5 Km.

Apresenta uma tipologia T4, possui uma área útil de pavimento de 170 m2 e é constituído por 1 piso num edifício de 9 pisos. Segundo a informação disponível o edifício foi construído em 2007.

A produção de águas quentes sanitárias é assegurada por um esquentador a gás natural. O aquecimento ambiente é assegurado por um multi-split com 4 unidades interiores. O arrefecimento é assegurado pelo multi-split com 4 unidades interiores.

A ventilação é processada de forma natural.

COMPORTAMENTO TÉRMICO DOS ELEMENTOS CONSTRUTIVOS DA HABITAÇÃO

Descreve e classifica o comportamento térmico dos elementos construtivos mais representativos desta habitação. Uma classificação de 5 estrelas, expressa a referência adequada para esses elementos, tendo em conta, entre outros factores, as condições climáticas onde o edificio se localiza.

Tipo	0-	Descrição das Principais Soluções	 Classificação
PAREDES		Parede simples com isolamento térmico pelo exterior Parede dupla sem isolamento térmico	**** **公公公
COBERTURAS		Cobertura horizontal sem isolamento térmico	<u> </u>
PAVIMENTOS			
JANELAS		Janela Simples com Caixilharia metálica sem corte térmico com vidro simples e com proteção solar pelo exterior	★★☆☆☆

Soluções sem isolamento, referem-se a soluções onde não existe isolamento térmico ou que não foi possível comprovar a sua existência. A classificação de janelas, inclui o contributo de eventuais dispositivos de oclusão noturna.

Pior tininininin

PERDAS E GANHOS DE CALOR DA HABITAÇÃO

Os elementos construtivos contribuem para o consumo de energia associado à climatização e para o conforto na habitação. A informação apresentada, indica o contributo desses elementos, bem como, os locais onde ocorrem perdas e ganhos de calor.

Entidade Gestora

Entidade Fiscalizadora

Edifício de Habitação SCE1234567890

PROPOSTAS DE MEDIDAS DE MELHORIA

As medidas propostas foram identificadas pelo Perito Qualificado e têm como objectivo a melhoria do desempenho energético do edifício. A implementação destas medidas, para além de reduzir a fatura energética anual, poderá contribuir para uma melhoria na classificação energética.

			do Investimento	Fatura Energética	 Energética (após medida)
0	\bigcirc	Isolamento térmico em paredes exteriores – aplicação pelo exterior com revestimento aplicado sobre o isolante	3.500€	até 150€	B ⁻
2	\bigcirc	Substituição de vãos envidraçados existentes por novos vãos envidraçados de classe energética A (classificação SEEP)	1.800€	até 200€	В
3		Instalação de sistema solar térmico individual – sistema de circulação forçada	2.500€	até 300€	В
4		Efetuar manutenção do equipamento de produção de águas quentes sanitárias	150€	até 0€	C
6	\triangle	Isolamento térmico de cobertura plana - aplicação sobre a laje	4.500€	até 300€	В

Saiba mais sobre estas medidas de melhoria nas restantes páginas deste certificado.

CONJUNTO DE MEDIDAS DE MELHORIA

Representa o impacto a nível financeiro e do desempenho energético na habitação, que este conjunto de medidas de melhoria terá, se for implementado.

12.300€

CUSTO TOTAL ESTIMADO DO INVESTIMENTO

até 800€

REDUÇÃO ANUAL ESTIMADA DA FATURA

Redução Anual

CLASSE ENERGÉTICA APÓS MEDIDA

RECOMENDAÇÕES SOBRE SISTEMAS TÉCNICOS

Os sistemas técnicos dos edificios de habitação, com especial relevância para os equipamentos responsáveis pela produção de águas quentes sanitárias, aquecimento e arrefecimento são determinantes no consumo de energia. Face a essa importância é essencial que sejam promovidas, com regularidade, ações que assegurem o correto funcionamento desses equipamentos, especialmente em sistemas com caldeiras que produzam água quente sanitária e/ou aquecimento, bem como sistemas de ar condicionado. Neste sentido, é recomendável que sejam realizadas ações de manutenção e inspeção regulares a esses sistemas, por técnicos qualificados. Estas ações contribuem para manter os sistemas regulados de acordo com as suas específicações, garantir a segurança e o funcionamento otimizado do ponto de vista energético e ambiental.

Nas situações de aquisição de novos equipamentos ou de substituição dos atuais, deverá obter, através de um técnico qualificado, informação sobre o dimensionamento e características adequadas em função das necessidades. A escolha correta de um equipamento permitirá otimizar os custos energéticos e de manutenção durante a vida útil do mesmo.

Estas recomendações foram produzidas pela ADENE - Agência para a energia. Caso necessite de obter mais informações sobre como melhorar o desempenho dos seus equipamentos, contacte esta agência ou um técnico qualificado.

Entidade Gestora

Entidade Fiscalizadora

Edifício de Habitação SCE1234567890

DEFINIÇÕES

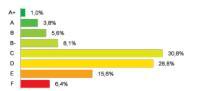
Energia Renovável - Energia proveniente de recursos naturais renováveis como o sol, vento, água, biomassa, geotermia entre outras, cuja utilização para suprimento dos diversos usos no edifício contribui para a redução do consumo de energia fóssil deste.

Emissões CO₂ - Indicador que traduz a quantidade de gases de efeito de estufa libertados para a atmosfera em resultado do consumo de energia nos diversos usos considerados no edifício.

Valores de Referência - Valores que expressam o desempenho energético dos elementos construtivos ou sistemas técnicos e que conduzem ao cenário de referência determinado para efeito de comparação com o edificio real.

Condições Padrão - Condições consideradas na avaliação do desempenho energético do edifício, admitindo-se para este efeito, uma temperatura interior de 18°C na estação de aquecimento e 25°C na estação de arrefecimento, bem como o aquecimento de uma determinada quantidade de água quente sanitária, em função da tipologia da habitação.

INFORMAÇÃO ADICIONAL


Tipo de Certificado Existente

Nome do PQ ADENE 99

Número do PQ QAPQ00099

Data de Emissão 28-01-2015

Código do Ponto de Entrega de Consumo

Distribuição de classes energéticas relativas aos certificados emitidos no período

NOTAS E OBSERVAÇÕES

A classe energética foi determinada com base na comparação do desempenho energético do edificio nas condições em que este se encontra, face ao desempenho que o mesmo teria com uma envolvente e sistemas técnicos de referência. Considera-se que os edificios devem garantir as condições de conforto dos ocupantes, pelo que, caso não existam sistemas de climatização no edificio/fração, assume-se a sua existência por forma a permitir comparações objetivas entre edificios.

Os consumos efetivos do edifício/fração podem divergir dos consumos previstos neste certificado, pois dependem da ocupação e padrões de comportamento dos utilizadores.

Entidade Gestora

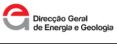
Entidade Fiscalizadora

Edifício de Habitação SCE1234567890

Esta secção do certificado energético apresenta, em detalhe, os elementos considerados pelo Perito Qualificado no processo de certificação do edificio/fração. Esta informação encontra-se desagregada entre os principais indicadores energéticos e dados climáticos relativos ao local do edificio, bem como as soluções construtivas e sistemas técnicos identificados em projeto e/ou durante a visita ao imóvel. As soluções construtivas e sistemas técnicos encontram-se caracterizados tendo por base a melhor informação recolhida pelo Perito Qualificado e apresentam uma indicação dos valores referenciais ou limites admissíveis (quando aplicáveis).

RESUMO	DOS PRINCIPAIS INDICADORES		DADOS CLIMÁTICOS	
Sigla	Descrição	 Valor / Referência 	Descrição	Valor
Nic	Necessidades nominais anuais de energia útil para aquecimento (kWh/m².ano)	70,0 / 50,0	Altitude	20 m
Nvc	Necessidades nominais anuais de energia útil para arrefecimento (kWh/m².ano	21,0 / 20,0	Graus-dia (18° C)	700
Qa	Energia útil para preparação de água quente sanitária (kWh/ano)	2.400,0 / 2.400,0	Temperatura média exterior (I / V)	11,1 / 22,9 °C
Wvm	Energia elétrica necessária ao funcionamento dos ventiladores (kWh/ano)	0,0	Zona Climática de inverno	11
Eren	Energia produzida a partir de fontes renováveis fontes renováveis para usos regulados (kWh/ano)	0,0 / 0,0*	Zona Climática de verão	V3
Eren, ext	Energia produzida a partir de fontes renováveis para outros usos (kWh/ano)	0,0	Duração da estação de aquecimento	4,7 meses
Ntc	Necessidades nominais anuais globais de energia primária (kWhep/m².ano)	76,0 / 74,0	Duração da estação de arrefecimento	4,0 meses

[&]quot; respeitante à contribuição mínima a que estão sujeitos os edificios novos ou grandes intervenções, quando aplicávei


	Área Total • e Orientação [m²]	Coeficiente de Transmissão Térmica* [W/m².ºC]			
Descrição dos Elementos Identificados		Solução	Referência	 Máximo 	
Paredes ———————————————————————————————————					
Parede exterior em alvenaria simples de tijolo furado de 0,15 m, sem isolamento térmico e com revestimento aderente em ambas as faces, no interior em placas de gesso cartonado e no exterior em cerâmica. Espessura total d	18 **	1,10 ****	0,50	-	
Parede exterior em alvenaria dupla de tijolo furado 0,11m+0,15m e espaço de ar de 0,06m, com isolamento térmico em EPS, com massa volúmica entre 15 e 20 Kg/m3, a preencher a totalidade do espaço de ar, revestimento aderente pelo exterior em reboco tradicional e pelo interior a estuque projetado. Espessura total da parede 0,38 m.	12 15	0,42	0,50	-	
Coberturas ————————————————————————————————————					
Cobertura horizontal exterior, sem isolamento térmico, em estrutura de laje maciça pesada, revestida pelo interior em estuque.	170,0	1,40	0,40	-	

^{*} Menores valores representam soluções mais eficientes.

Entidade Gestora

Entidade Fiscalizadora

